Statistical signature of interactions in heterogeneous cellular environments

Hippolyte Verdier, François Laurent, Maxime Duval, Christian L. Vestergaard, Jean-Baptiste Masson
hverdier@pasteur.fr, flaurent@pasteur.fr,mduval@pasteur.fr
clvestergaard@pasteur.fr, jbmasson@pasteur.fr

Overview

- Problem statement
- The mapping hypothesis
- Method
- Simulation-based inference
- GRATIN : Graphs on Trajectories for Inference
- Results
- On simulated data
- Application to experimental data
- Conclusion \& perspectives

Overview

- Problem statement
- The mapping hypothesis
- Method
- Simulation-based inference
- GRATIN: Graphs on Trajectories for Inference
- Results
- On simulated data
- Application to experimental data
- Conclusion \& perspectives

Random walks at the membrane

Figure 1:
Trajectories of Gag, 2 minutes of observation ${ }^{1}$
${ }^{1}$ Data acquired by C. Favard — Floderer C. et al, . Sci Rep. 2018 Nov 2;8(1):16283 इ 引 ゆQल

Overview

- Problem statement
- The mapping hypothesis
- Method
- Simulation-based inference
- GRATIN: Graphs on Trajectories for Inference
- Results
- On simulated data
- Application to experimental data
- Conclusion \& perspectives

The problems

Problem: The Mapping Hypothesis
From a set $\mathcal{T}=\left\{\boldsymbol{r}_{t}^{i} \mid i \in\left[0, m_{\text {max }}\right], t \in\left[0, T_{\text {max }}\right]\right\}$ of localisations within a bounded domain $\mathcal{D} \in \mathbb{R}^{\prime}$ with $I \leq 3$, with an underlying model written as

$$
d \boldsymbol{r}_{t}^{i}=\boldsymbol{a}_{t}\left(\boldsymbol{r}_{t}^{i}\right) d t+\boldsymbol{b}_{t}\left(\boldsymbol{r}_{t}^{i}\right) \circ d W(t)
$$

we seek ${ }^{2}$

- A probabilistic assignment $\mathcal{S}=\left\{\sigma(t)_{i}^{j} \mid \forall(i, j) \in \mathcal{L}\right\}$ associated to $P_{i}^{j}\left(\boldsymbol{r}_{t}^{i}, \boldsymbol{r}_{t+\Delta t}^{j} \mid \boldsymbol{\theta}\right)$ between particle between time t and $t+\Delta t$ with $\boldsymbol{\theta}$ the set of parameters.
- A self organising mesh \mathcal{M}
- A set of maps $\mathcal{M}\{-1, L\}=\left\{\left(\boldsymbol{a}_{t}(\boldsymbol{r}), \boldsymbol{b}_{t}(\boldsymbol{r})\right) \mid \boldsymbol{r} \in \mathcal{D}\right\}$

Overdamped Langevin equation

$$
\frac{d \boldsymbol{r}}{d t}=D_{t}(\boldsymbol{r})\left(\boldsymbol{f}_{t}(\boldsymbol{r})+\lambda \frac{\nabla D_{t}(\boldsymbol{r})}{D_{t}(\boldsymbol{r})}\right)+\sqrt{2 D_{t}(\boldsymbol{r}) \boldsymbol{\xi}}(t)
$$

${ }^{2}$ A. Serov et al., Phys. Rep., 2020 Mar 2;10(1):3783.

The mapping hypothesis

Bayesian Inference

$$
P(U \mid T)=\frac{\overbrace{P(T \mid U)}^{\text {Likelihood }} \overbrace{\pi(U)}^{\text {Prior }}}{\underbrace{P(T)}_{\text {Evidence }}}
$$

Likelihood: solving the Fokker-Planck equation

$$
\begin{aligned}
\frac{\partial \overbrace{P\left(\boldsymbol{r}, t \mid \boldsymbol{r}_{0}, t_{0}\right)}^{\text {Likelihood }}}{\partial t}= & -\nabla\left[(D(\boldsymbol{r}) \boldsymbol{f}(\boldsymbol{r})+\lambda \nabla D(\boldsymbol{r})) P\left(\boldsymbol{r}, t \mid \boldsymbol{r}_{0}, t_{0}\right)\right] \\
& +\nabla\left[D(\boldsymbol{r}) \nabla P\left(\boldsymbol{r}, t \mid \boldsymbol{r}_{0}, t_{0}\right)\right]
\end{aligned}
$$

The mapping hypothesis (cont.)

Prior: Physics of the environment

$$
\begin{aligned}
\pi(D) & \propto \exp \left(-\int d^{2} \boldsymbol{r} \mu_{\boldsymbol{r}}|\nabla D(\boldsymbol{r}, t)|^{2}+\mu_{t}(\dot{D}(\boldsymbol{r}, t))^{2}\right) \\
\pi(\mathbf{f}) & \propto \exp \left(-\int d^{2} \boldsymbol{r} \lambda_{\boldsymbol{r}}|\nabla \mathbf{f}(\mathbf{r}, \mathbf{t})|^{2}+\lambda_{\mathbf{t}}(\dot{\mathbf{f}}(\mathbf{r}, \mathbf{t}))^{2}\right)
\end{aligned}
$$

Figure 2: Space time inference

The mapping hypothesis (cont.)

Physics-informed stochastic optimization ${ }^{3}$

- Perform in parallel
- Randomly select a local domain (α, τ) with $d\left(\alpha, \alpha^{\prime}\right)>d_{s}\left(\mu_{r}, \lambda_{r}\right)$ and $d\left(\tau, \tau^{\prime}\right)>d_{\tau}\left(\mu_{\tau}, \lambda_{\tau}\right)$
- Sample a minibatch $\Delta \boldsymbol{r}_{\mathcal{B}_{\alpha, \tau}}=\cup_{\left(\alpha^{\prime}, \tau^{\prime}\right) \in \mathcal{B}_{\alpha^{\prime}, \tau^{\prime}}}$ in the neighbourhood of (α, τ)
- update $\theta_{\alpha, \tau}^{(k)}=\theta_{\alpha, \tau}^{(k-1)}+\Delta \theta\left(\Delta \boldsymbol{r}_{\mathcal{B}_{\alpha, \tau}}, \theta_{\mathcal{S}_{\alpha, \tau}}^{(k-1)}\right)$
- approximate local posterior:
$f_{\alpha, \tau}\left(\theta_{\mathcal{B}_{\alpha, \tau}}\right)=-\log p\left(\Delta \boldsymbol{r}_{\alpha, \tau} \mid \theta_{\mathcal{R}_{\alpha, \tau}}\right)+\mu_{r} q_{\alpha}\left(D_{\mathcal{R}_{\alpha, \tau}}\right)+\mu_{t} q_{\mathcal{T}}\left(D_{\alpha, \mathcal{T}_{\tau}}\right)+\ldots$

The mapping hypothesis (cont.)

Figure 3: Space time inference of transient Virion assembly. 100k parameters
${ }^{3}$ F. Laurent et al., Phys Biol, 17, 015 003, 2019.

Example segmentations

(c) k-Means

Example segmentations (cont.)

Figure 5: Growing-When-Required-based tessellation

Ito-Stratonovich dilemma

Stochastic integrals

$$
d X_{t}=\underbrace{a\left(X_{t}\right)}_{\text {drift }} d t+\underbrace{b\left(X_{t}\right)}_{\text {diffusion }} \circ d W(t)
$$

We integrate from any $x \in\left[x_{0} ; x_{1}\right]$ with $0 \leq \lambda \leq 1$

$$
\begin{gathered}
x=(1-\lambda) x_{0}+\lambda x_{1} \\
\mathbb{E}(\Delta x)=a\left(x_{0}\right) \Delta t+\underbrace{\lambda b\left(x_{0}\right) b^{\prime}\left(x_{0}\right)}_{\text {diffusion gradient }} \Delta t+\mathrm{O}\left(\Delta t^{2}\right)
\end{gathered}
$$

Bayesian Inference

Bayesian evidence analysis

- H_{0} : Heterogeneous diffusion environment
- H_{1} : Heterogeneous diffusion environment with active forces.

$$
\begin{gathered}
B_{1,0} \equiv \frac{P\left(x \mid M_{1}\right)}{P\left(x \mid M_{0}\right)} \\
B_{1,0}=\eta^{d} \frac{\int_{0}^{1} d \lambda\left[\nu+\eta^{2}\left(\xi_{t}-\lambda \xi_{s p}\right)^{2}\right]^{-p}}{\int_{0}^{1} d \lambda\left[\nu+\left(\xi_{t}-\lambda \xi_{s p}\right)^{2}\right]^{-p}}
\end{gathered}
$$

$\xi_{s p} \equiv \frac{\nabla \boldsymbol{b} \Delta t}{\sqrt{V}}:$ SNR spurious force $\quad \xi_{t} \equiv \frac{\overline{\Delta r}}{\sqrt{V}}$: SNR for total force
$V=\overline{(\Delta \boldsymbol{r}-\overline{\Delta \boldsymbol{r}})^{2}}$: one-jump variance $\quad \nu=1-\frac{n_{\pi} V_{\pi}}{n V}$: ratio of jump variances
$\eta=\sqrt{\frac{n_{\pi}}{n+n_{\pi}}}$: normalized \# points $\quad p(d)=\frac{d\left(n+n_{\pi}-1\right)}{2}-1$: exponent

Bayesian Inference

Versatile Applications

CRISPR-Cas9 dynamics ${ }^{4}$

Cell Motility ${ }^{5}$

Receptor-Scaffold Interactions ${ }^{6}$

Virion Assembly ${ }^{7}$
${ }^{4}$ "S .C. Knight et al., Science, 350, 823-826, 2015. T. Blanc et al., Nat Methods, 17, 1100-1102, 2020.
${ }^{5}$ A. Remorino et al., Cell Rep, 21, 1922-1935, 2017. M. El Beheiry,
M. Dahan \& J. B. Masson, Nat Methods, 12, 594-595, 2015.
${ }^{6}$ J. B. Masson et al., Biophys J, 106, 74-83, 2014. S. Turkcan \& J.-B. Masson, PLOS ONE, 8, e82799, 2013.
${ }^{7}$ C. Floderer et al., Sci Rep, 8, 17 426, 2018. A.S. Serov et al., Sci Rep, 10, 3783, 2020.

Scientific and medical computing software

TRamWAy: parallel Python software for random walk analysis

- Based on inferenceMAP ${ }^{8}$
- Non-tracking with Belief Propagation ${ }^{9}$
- Inference performed on multiple meshes in space and time ${ }^{10}$
- Mapping of biophysical properties on cell ${ }^{11}$
- Graph Neural Network approach to models of random walks ${ }^{12}$
- ~ 60000 lines

Figure 6

[^0]
Anomalous diffusion

Mean Square Displacement

$$
\left\langle\left(r_{t}-r_{0}\right)^{2}\right\rangle \propto t^{\alpha}, 0 \leq \alpha \leq 2, \alpha \neq 1
$$

Anomalous diffusion

Mean Square Displacement

$$
\left\langle\left(r_{t}-r_{0}\right)^{2}\right\rangle \propto t^{\alpha}, 0 \leq \alpha \leq 2, \alpha \neq 1
$$

Figure 7: MSD scaling (Wikipedia)

Anomalous diffusion

$\alpha<1$: Subdiffusion
Subdiffusive random walks ($\alpha=0.5$)

Anomalous diffusion (cont.)

Figure 8: Origins of subdiffusion
Condamin, Tejedor, Voituriez, et al. [1]

Anomalous diffusion (cont.)

$\alpha>1$: Superdiffusion

Superdiffusive random walks ($\alpha=1.5$)

Inverse problem

From a trajectory $\mathbf{r}_{1: T}$, infer relevant parameters:

- Motion identity m, through probabilities of belonging to each class $\hat{p}=(\hat{p}(m=1), \ldots \hat{p}(m=k))$
- Anomalous exponent α
- Intensity of drift
- Intensity of confinement

Challenges

- No analytic likelihood in general
- Highly stochastic processes
- Ability to generalize

Overview

- Problem statement
- The mapping hypothesis
- Method
- Simulation-based inference
- GRATIN : Graphs on Trajectories for Inference
- Results
- On simulated data
- Application to experimental data
- Conclusion \& perspectives

Simulation-based inference

- Numerous physical models explored with simulations
- These simulations are poorly suited for inference
- ABC: historical approach
- New initiatives stemming from statistical learning ${ }^{13}$
- Amortised likelihood approach

Figure 9: derived from [1]

[^1]
Simulation-based inference

1. Simulate a diversity of trajectories

Simulation-based inference

Figure 10: Simulated trajectories for training

Simulation-based inference

1. Simulate a diversity of trajectories
2. Train a model to infer parameters from these trajectories
3. Perform inference on experimental observations!

Figure 10: Simulated trajectories for training

Graphs on Trajectories for Inference

Graphs on Trajectories for Inference

[^2]
Latent representation of random walks ${ }^{15}$

[^3]
A new vision of synapses

Figure 11: Evolution of distribution of position in the latent space as a function of radius within the synapses

Overview

- Problem statement
- The mapping hypothesis
- Method
- Simulation-based inference
- GRATIN : Graphs on Trajectories for Inference
- Results
- On simulated data
- Application to experimental data
- Conclusion \& perspectives

Results on simulated data

Figure 12: Performance : Regression of α and classification Noise level equivalent to PALM conditions

Results on simulated data

Figure 12: Performance : Regression of Figure 13: Latent space, colored by α and classification
Noise level equivalent to PALM conditions
motion type
One point $=$ one trajectory $10 \leq L \leq 30$

Illustration on experimental data

Figure 14: Trajectories of CAAX Gag ${ }^{16}$

[^4]
Gag interacts more than GT46 and Tetherin ${ }^{17}$

Figure 15: Latent representations

[^5]
Gag interacts more than GT46 and Tetherin ${ }^{17}$

Figure 16: Estimations of α

Figure 15: Latent representations

[^6]
Overview

- Problem statement
- The mapping hypothesis
- Method
- Simulation-based inference
- GRATIN : Graphs on Trajectories for Inference
- Results
- On simulated data
- Application to experimental data
- Conclusion \& perspectives

Conclusion \& perspectives

Conclusions:

- Spatio-temporal mapping
- individual RW model inference

Perspectives:

- Unsupervised learning
- statistical testing in latent space

Recent Funding \& Miscellaneous

Funding

- ANR: TramWAy, SiNCoBe
- European: Marie-Curie, EMBL-EU.
- Other: Ile de France, DIM-Elicit, Inception, SESAME PIA 2018, PSL, Janelia, ACIP
- Sponsorship : CRPCEN, Gilead Science, EDF, Institut Curie, PSL
- Companies : Avatar Medical, Sanofi, NVIDIA

Visiting positions

- Janelia Research Campus (JBM)
- Cambridge MRC (JBM, FL)
- EMBL (JBM)
- CPT Marseille (CLV)

[^0]: ${ }^{8}$ M. El Beheiry, M. Dahan \& J. B. Masson, Nat Methods, 12, 594-595, 2015.
 ${ }^{9}$ C. Vestergaard et al, In preparation.
 ${ }^{10}$ F. Laurent et al., Phys Biol, 17, 015 003, 2019.
 ${ }^{11}$ C. Floderer et al., Sci Rep, 8, 17 426, 2018. A.S. Serov et al., Sci Rep, 10, 3783, 2020.
 ${ }^{12} \mathrm{H}$. Verdier et al, 2021 arXiv:2103.11738.

[^1]: ${ }^{1}$ K. Cranmer et al., PNAS 117, 30055-30062 (2020)

[^2]: ${ }^{14} \mathrm{H}$. Verdier et al, J. Phys. A. (2021)

[^3]: ${ }^{15}$ H. Verdier et al, J Phys A: Math. Theor. 2021.

[^4]: ${ }^{16}$ Data acquired by C. Favard — Floderer C. et al, . Sci Rep. 2018 Nov 2;8(1):16283 三 इ

[^5]: ${ }^{17}$ Analysis made on data acquired by P. Sengupta

[^6]: ${ }^{17}$ Analysis made on data acquired by P. Sengupta

