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Random walks at the membrane
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Figure 1:
Trajectories of Gag,
2 minutes of
observation1

1Data acquired by C. Favard — Floderer C. et al, . Sci Rep. 2018 Nov 2;8(1):16283
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The problems

Problem: The Mapping Hypothesis

From a set T = {r it |i ∈ [0,mmax ], t ∈ [0,Tmax ]} of localisations within a
bounded domain D ∈ Rl with l ≤ 3, with an underlying model written as

dr it = at
(
r it
)
dt + bt

(
r it
)
◦ dW (t)

we seek2

▶ A probabilistic assignment S = {σ (t)ji |∀ (i , j) ∈ L} associated to

P j
i

(
r it , r

j
t+∆t |θ

)
between particle between time t and t +∆t with θ

the set of parameters.
▶ A self organising mesh M
▶ A set of maps M{⊣, ⌊} = {(at (r) ,bt (r)) |r ∈ D}

Overdamped Langevin equation

dr
dt

= Dt (r)
(

ft (r) + λ
∇Dt (r)
Dt (r)

)
+

√
2Dt (r)ξ (t)

2A. Serov et al., Phys. Rep., 2020 Mar 2;10(1):3783. .
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The mapping hypothesis

Bayesian Inference

P (U|T ) =

Likelihood︷ ︸︸ ︷
P (T |U)

Prior︷ ︸︸ ︷
π (U)

P (T )︸ ︷︷ ︸
Evidence

Likelihood: solving the Fokker-Planck equation

∂

Likelihood︷ ︸︸ ︷
P (r , t|r0, t0)

∂t
=−∇ [(D (r) f (r) + λ∇D (r))P (r , t|r0, t0)]

+∇ [D (r)∇P (r , t|r0, t0)]
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The mapping hypothesis (cont.)

Prior: Physics of the environment

π (D) ∝ exp

(
−
∫

d2rµr |∇D (r , t) |2 + µt

(
Ḋ (r , t)

)2
)

π (f) ∝ exp

(
−
∫

d2rλr |∇f (r, t) |2 + λt

(
ḟ (r, t)

)2
)

Figure 2: Space time inference
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The mapping hypothesis (cont.)

Physics-informed stochastic optimization3

▶ Perform in parallel
▶ Randomly select a local domain (α, τ) with d (α, α′) > ds (µr , λr )

and d (τ, τ ′) > dτ (µτ , λτ )
▶ Sample a minibatch ∆rBα,τ

= ∪(α′,τ ′)∈Bα′,τ′ in the neighbourhood

of (α, τ)

▶ update θ
(k)
α,τ = θ

(k−1)
α,τ +∆θ

(
∆rBα,τ

, θ
(k−1)
Sα,τ

)
▶ approximate local posterior:

fα,τ
(
θBα,τ

)
= − log p

(
∆rα,τ |θRα,τ

)
+µrqα

(
DRα,τ

)
+µtqT (Dα,Tτ )+ ...
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The mapping hypothesis (cont.)

Figure 3: Space time inference of transient Virion assembly. 100k parameters

3F. Laurent et al., Phys Biol, 17, 015 003, 2019.
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Example segmentations

(a) Hexagonal (b) Quad-tree

(c) k-Means
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Example segmentations (cont.)

Figure 5: Growing-When-Required-based tessellation
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Ito-Stratonovich dilemma

Stochastic integrals

dXt = a (Xt)︸ ︷︷ ︸
drift

dt + b (Xt)︸ ︷︷ ︸
diffusion

◦dW (t)

We integrate from any x ∈ [x0; x1] with 0 ≤ λ ≤ 1

x = (1− λ) x0 + λx1

E (∆x) = a (x0)∆t + λb (x0) b
′ (x0)︸ ︷︷ ︸

diffusion gradient

∆t +O
(
∆t2

)
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Bayesian Inference

Bayesian evidence analysis
▶ H0 : Heterogeneous diffusion environment
▶ H1 : Heterogeneous diffusion environment with active forces.

B1,0 ≡
P (x |M1)

P (x |M0)

B1,0 = ηd

∫ 1

0
dλ

[
ν + η2 (ξt − λξsp)

2
]−p

∫ 1

0
dλ

[
ν + (ξt − λξsp)

2
]−p

ξsp ≡ ∇b∆t√
V

: SNR spurious force ξt ≡ ∆r√
V
: SNR for total force

V =
(
∆r −∆r

)2
: one-jump variance ν = 1− nπVπ

nV : ratio of jump variances

η =
√

nπ
n+nπ

: normalized # points p (d) = d(n+nπ−1)
2 − 1: exponent
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Bayesian Inference
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Versatile Applications

CRISPR-Cas9 dynamics4 Cell Motility5

Receptor-Scaffold Interactions6 Virion Assembly7
4“S .C. Knight et al., Science, 350, 823-826, 2015. T. Blanc et al., Nat Methods, 17,

1100-1102, 2020.
5A. Remorino et al., Cell Rep, 21, 1922-1935, 2017. M. El Beheiry,

M. Dahan & J. B. Masson, Nat Methods, 12, 594-595, 2015.
6J. B. Masson et al., Biophys J, 106, 74-83, 2014. S. Turkcan & J.-B. Masson, PLOS ONE,

8, e82799, 2013.
7C. Floderer et al., Sci Rep, 8, 17 426, 2018. A.S. Serov et al., Sci Rep, 10, 3783, 2020.
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Scientific and medical computing software

TRamWAy: parallel Python software for random walk analysis
▶ Based on inferenceMAP8

▶ Non-tracking with Belief Propagation9

▶ Inference performed on multiple meshes in space and time10

▶ Mapping of biophysical properties on cell11

▶ Graph Neural Network approach to models of random walks12

▶ ∼ 60 000 lines

Figure 6

8M. El Beheiry, M. Dahan & J. B. Masson, Nat Methods, 12, 594-595, 2015.
9C. Vestergaard et al, In preparation.

10F. Laurent et al., Phys Biol, 17, 015 003, 2019.
11C. Floderer et al., Sci Rep, 8, 17 426, 2018. A.S. Serov et al., Sci Rep, 10, 3783, 2020.
12H. Verdier et al, 2021 arXiv:2103.11738.
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Anomalous diffusion

Mean Square Displacement

⟨(rt − r0)
2⟩ ∝ tα , 0 ≤ α ≤ 2, α ̸= 1

Figure 7: MSD scaling (Wikipedia)
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Anomalous diffusion

α < 1 : Subdiffusion

Subdiffusive random walks ( = 0.5)

fBM
sBM
CTRW
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Anomalous diffusion (cont.)

Figure 8: Origins of subdiffusion
Condamin, Tejedor, Voituriez, et al. [1]

Decision and Bayesian Computation AEIS October 28, 2021 20 / 36



Anomalous diffusion (cont.)

α > 1 : Superdiffusion

Superdiffusive random walks ( = 1.5)
fBM
sBM
LW
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Inverse problem

From a trajectory r1:T , infer relevant parameters :

▶ Motion identity m, through probabilities of belonging to each class
p̂ = (p̂(m = 1), . . . p̂(m = k))

▶ Anomalous exponent α

▶ Intensity of drift

▶ Intensity of confinement

Challenges
▶ No analytic likelihood in general
▶ Highly stochastic processes
▶ Ability to generalize
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Simulation-based inference

▶ Numerous physical models explored
with simulations

▶ These simulations are poorly suited
for inference

▶ ABC: historical approach
▶ New initiatives stemming from

statistical learning13

▶ Amortised likelihood approach

Figure 9: derived from [1]

1K. Cranmer et al., PNAS 117, 30055–30062 (2020)

Decision and Bayesian Computation AEIS October 28, 2021 24 / 36



Simulation-based inference

1. Simulate a diversity of trajectories

2. Train a model to infer parameters from
these trajectories

3. Perform inference on experimental
observations !

Figure 10: Simulated
trajectories for training
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GRATIN
Graphs on Trajectories for Inference
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GRATIN14

Graphs on Trajectories for Inference

14H. Verdier et al, J. Phys. A. (2021)
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Latent representation of random walks15

15H. Verdier et al, J Phys A: Math. Theor. 2021.
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A new vision of synapses

Figure 11: Evolution of distribution of position in the latent space as a function
of radius within the synapses
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Results on simulated data
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Figure 12: Performance : Regression of
α and classification
Noise level equivalent to PALM
conditions

Figure 13: Latent space, colored by
motion type
One point = one trajectory
10 ≤ L ≤ 30
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Illustration on experimental data
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Figure 14: Trajectories of CAAX Gag 16

16Data acquired by C. Favard — Floderer C. et al, . Sci Rep. 2018 Nov 2;8(1):16283

Decision and Bayesian Computation AEIS October 28, 2021 32 / 36



Gag interacts more than GT46 and Tetherin 17

Figure 15: Latent representations
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Figure 16: Estimations of α

17Analysis made on data acquired by P. Sengupta
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Conclusion & perspectives

Conclusions :
▶ Spatio-temporal mapping
▶ individual RW model inference

Perspectives :
▶ Unsupervised learning
▶ statistical testing in latent space
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